The University of Michigan Biological Station (UMBS) was founded in 1909.
Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition
Title | Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition |
Publication Type | Journal Article |
Year of Publication | 2006 |
Authors | Sefcik LTaylor, Zak DR, Ellsworth DS |
Journal | Global Change Biology |
Volume | 13 |
Pagination | 132-146 |
Keywords | TREES |
Abstract | We tested the main and interactive effects of elevated carbon dioxide concentration ([CO2]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N-limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings (Betula papyrifera, Populus tremuloides, Acer saccharum, Fagus grandifolia, Pinus strobus, and Prunus serotina) to a factorial combination of atmospheric CO2 (ambient, and elevated CO2 at 658 lmolCO2 mol1) and N deposition (ambient and ambient 130 kgNha1 yr1) in open-top chambers placed in an understory light gradient. Elevated CO2 exposure significantly increased apparent quantum efficiency of electron transport by 41% (Po0.0001), light-limited photosynthesis by 47% (Po0.0001), and light-saturated photosynthesis by 60% (Po0.003) compared with seedlings grown in ambient [CO2]. Experimental N deposition significantly increased light-limited photosynthesis as light availability increased (Po0.037). Species differed in the magnitude of light-saturated photosynthetic response to elevated N and light treatments (Po0.016). Elevated CO2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability (R250.26, Po0.0001). Experimental N deposition significantly increased average survival of all species by 48% (Po0.012). However, seedling survival was greatest (85%) under conditions of both high [CO2] and N deposition (Po0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass (R250.39, Po0.001), and that carboxylation capacity (Vcmax) was a better predictor for seedling growth and survival than maximum photosynthetic rate (Amax). Our results suggest that increasing [CO2] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition. |