Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements

TitleComparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements
Publication TypeJournal Article
Year of Publication2013
AuthorsMcFarlane KJ, Torn MS, Hanson PJ, Porras RC, Swanston CW, Callaham MA, Guilderson TP
JournalBiogeochemistry
Pagination457-476
KeywordsSOILS
Abstract

Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained. We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy; MI-Fine, loamy); Bartlett Experimental Forest (NH-BF); Harvard Forest (MA-HF); and Baskett Wildlife Recreation and Education Area (MO-OZ). We quantified soil carbon stocks and measured bulk soil radiocarbon to at least 60 cm depth. We determined surface (0–15 cm) soil carbon distribution and turnover times in free light (unprotected), occluded light (intra-aggregate), and dense (mineral-associated) soil fractions. Total soil carbon stocks ranged from 55 ± 4 to 229 ± 42 Mg C ha-1 and were lowest at MI-Coarse and MO-OZ and highest at MI-Fine and NH-BF. Differences in climate only partly explained differences in soil organic matter 14C and mean turnover times, which were 75–260 year for free-light fractions, 70–625 year for occluded-light fractions, and 90–480 year for dense fractions. Turnover times were shortest at the warmest site, but longest at the northeastern sites (NH-BF and MA-HF), rather than the coldest sites (MI-Coarse and MI-Fine). Soil texture, mineralogy, drainage, and macrofaunal activity may be at least as important as climate in determining soil carbon dynamics in temperate broadleaf forests.

DOI10.1007/s10533-012-9740-1